Format

Send to:

Choose Destination
See comment in PubMed Commons below
Anal Chem. 2003 Sep 15;75(18):4918-24.

Linking mass spectrometry and slab-polyacrylamide gel electrophoresis by passive elution of lipopolysaccharides from reverse-stained gels: analysis of gel-purified lipopolysaccharides from Haemophilus influenzae strain Rd.

Author information

  • 1Clinical Research Centre, Karolinska Institutet, University College of South Stockholm, NOVUM, S-141 86 Huddinge, Sweden.

Abstract

Haemophilus influenzae is an important cause of human disease, and its lipopolysaccharide (LPS) is known to be a major virulence factor. H. influenzae produces short-chain LPS of which the heterogeneity is often visualized by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) using silver staining for detection. Individual bands have not previously been recovered by this method in quantities sufficient for mass spectrometry. In an attempt toward the development of sensitive mass spectrometrical strategies to be used in structural studies of H. influenzae LPS and LPS from other bacteria, we have applied here our previously described slab-PAGE-based micropurification method to obtain unmodified LPS fractions of high purity (>95%) from a crude LPS preparation of H. influenzae strain Rd. Two LPS-fractions were obtained which, after a procedure including mild acid hydrolysis, dephosphorylation, and permethylation of the resulting oligosaccharides, were subjected to tandem electrospray ionization mass spectrometry (ESI-MS/MS). The quantities of micropurified LPS fractions-the recovery of LPS in terms of total mass was 30%-were found sufficient to allow the characterization of LPS glycoforms. The ESI-MS spectra of the individual bands showed reduced heterogeneity. Furthermore, the integrity of the micropurified LPS was confirmed. The spectra-displayed molecular ions showed improved intensity, increased respective signal-to-noise ratios demonstrating the sensitivity of analysis. Consequently, both the direct determination of the molecular masses of the gel-separated LPS glycoforms and sequence analyses using ESI-MS/MS were possible.

PMID:
14674472
[PubMed]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Loading ...
    Write to the Help Desk