Display Settings:


Send to:

Choose Destination
See comment in PubMed Commons below
J Immunol. 2003 Dec 15;171(12):6640-9.

The protein made from a common allele of KIR3DL1 (3DL1*004) is poorly expressed at cell surfaces due to substitution at positions 86 in Ig domain 0 and 182 in Ig domain 1.

Author information

  • 1Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305-5126, USA.


KIR3DL1 is an inhibitory HLA-B receptor of human NK and T cells that exhibits genetic and phenotypic polymorphism. KIR3DL1*004, a common allotype, cannot be detected on the surface of PBLs using the KIR3DL1-specific Ab DX9. The nature of this phenotype was investigated through comparison of 3DL1*004 with 3DL1*002, an allele giving high DX9 binding to cell surfaces. Analysis of Jurkat T cell transfectants with 3DL1*004 cDNA showed that 3DL1*004 is poorly expressed at the cell surface, but detectable intracellularly. Analysis of recombinant mutants made between 3DL1*004 and 3DL1*002 showed that polymorphism in Ig domains 0 and 1 (D0 and D1) causes the intracellular retention of 3DL1*004. Reciprocal point mutations were introduced into 3DL1*004 and 3DL1*002 at positions 44 and 86 of the D0 domain, where 3DL1*004 has unique residues, and at position 182 of the D1 domain, where 3DL1*004 resembles 3DL1*005, an allotype giving low DX9-binding phenotype. Leucine 86 in 3DL1*004 is the principal cause of its intracellular retention, with a secondary and additive contribution from serine 182. By contrast, glycine 44, which is naturally present in 3DL1*004, slightly increased cell surface expression when introduced into 3DL1*002. In 3DL1*004, the presence of leucine at position 86 corrupts the WSXPS motif implicated in proper folding of the KIR D0 Ig-like domain. This study demonstrates how a difference between KIR3DL1 allotypes in the D0 domain profoundly affects cell surface expression and function.

[PubMed - indexed for MEDLINE]
Free full text

LinkOut - more resources

Full Text Sources

Other Literature Sources

Molecular Biology Databases

PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Icon for HighWire
    Loading ...
    Write to the Help Desk