Send to:

Choose Destination
See comment in PubMed Commons below
Nature. 2003 Dec 18;426(6968):874-8. Epub 2003 Dec 3.

Recognition of small interfering RNA by a viral suppressor of RNA silencing.

Author information

  • 1Structural Biology Program, Memorial Sloan-Kettering Cancer Center, New York, New York 10021, USA.


RNA silencing (also known as RNA interference) is a conserved biological response to double-stranded RNA that regulates gene expression, and has evolved in plants as a defence against viruses. The response is mediated by small interfering RNAs (siRNAs), which guide the sequence-specific degradation of cognate messenger RNAs. As a counter-defence, many viruses encode proteins that specifically inhibit the silencing machinery. The p19 protein from the tombusvirus is such a viral suppressor of RNA silencing and has been shown to bind specifically to siRNA. Here, we report the 1.85-A crystal structure of p19 bound to a 21-nucleotide siRNA, where the 19-base-pair RNA duplex is cradled within the concave face of a continuous eight-stranded beta-sheet, formed across the p19 homodimer interface. Direct and water-mediated intermolecular contacts are restricted to the backbone phosphates and sugar 2'-OH groups, consistent with sequence-independent p19-siRNA recognition. Two alpha-helical 'reading heads' project from opposite ends of the p19 homodimer and position pairs of tryptophans for stacking over the terminal base pairs, thereby measuring and bracketing both ends of the siRNA duplex. Our structure provides an illustration of siRNA sequestering by a viral protein.

[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Nature Publishing Group
    Loading ...
    Write to the Help Desk