Display Settings:

Format

Send to:

Choose Destination
We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
J Biol Chem. 2004 Feb 20;279(8):7296-303. Epub 2003 Dec 3.

An autocrine/paracrine loop linking keratin 14 aggregates to tumor necrosis factor alpha-mediated cytotoxicity in a keratinocyte model of epidermolysis bullosa simplex.

Author information

  • 1Department of Dermatology, Akita University School of Medicine, Akita 010-8543, Japan. kyoneda@doc.med.akita-u.ac.jp

Abstract

Epidermolysis bullosa simplex (EBS) is a blistering cutaneous disease featuring protein aggregates. Here we investigate the molecular mechanisms linking protein aggregates to cell death in a cellular model of EBS in which HaCaT keratinocytes are transfected with plasmids expressing various mutant forms of keratin 14 (K14). In HaCaT cells, mutant K14 was found to form ubiquitinated protein aggregates that suppressed 20 S proteasome function instead of being degraded by 20 S proteasome. Keratinocytes with mutant K14-induced phosphorylation of the stress-activated kinase c-Jun, as well as up-regulation of unfolding protein Bip, indicates induction of endoplasmic reticulum stress. HaCaT cells were susceptible to apoptosis by activation of caspases-3, and -8, but not caspase-9 or -12. Tumor necrosis factor-alpha (TNFalpha) in the culture medium was increased in keratinocytes with mutant K14 compared with wild K14, and the addition of neutralizing anti-TNFalpha antibody to the culture medium rescued keratinocytes from cell death. Thus, TNFalpha release and the subsequent activation of the TNFalpha receptor by an autocrine/paracrine pathway links protein aggregates to cell death in this keratinocyte EBS cellular model. Furthermore, mutation in K14 reduced its affinity to TNFalpha receptor-associated death domain (TRADD), suggesting that the susceptibility of keratinocytes to caspase-8-mediated apoptosis is increased in mutated K14 because of impairment of the cytoprotective mechanism mediated by K14-TRADD interaction.

PMID:
14660619
[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Icon for HighWire
    Loading ...
    Write to the Help Desk