Format

Send to:

Choose Destination
See comment in PubMed Commons below
J Neurosci. 2003 Dec 3;23(35):11036-44.

Neurotrophic effects of vascular endothelial growth factor on organotypic cortical explants and primary cortical neurons.

Author information

  • 1Department of Anatomy and Cell Biology, The George Washington University Medical Center, Washington, DC 20037, USA. anajmr@gwumc.edu

Abstract

Vascular endothelial growth factor (VEGF) is well known to play an important regulatory role in vascular growth and development. Because gene knock-outs of VEGF and its receptors flk-1 and flt-1 result in early embryonic lethality, determining roles for VEGF in CNS development has been particularly difficult. Recent studies have shown that VEGF is upregulated after various injuries to the adult brain and that the cytokine affords protection to cultured neurons affected by oxidative or excitotoxic stress. The present study demonstrates, for the first time, that VEGF is directly neurotrophic to CNS neurons in culture. We applied VEGF to normoxic fetal organotypic cortical explants as a model of CNS neuropil, in addition to primary cortical neurons, to assess direct growth effects absent vascular or astroglial activity. We found that VEGF provided a significant dose-responsive increase in the neuronal microtubule markers TUJ1 and MAP-2, as well as mRNA for MAP-2 and flk-1. Antisense oligodeoxynucleotides to flk-1, but not flt-1, inhibited neuritic outgrowth, whereas inhibitors of the signaling pathways MEK1 and P13-AKT both abrogated VEGF-induced growth. VEGF applied to primary cortical neurons produced significant increases in neuronal cell body diameter and the number of emerging neurites mediated by flk-1. Possibly, VEGF achieves its effects by acting on the neuronal microtubular content, which is involved with growth, stability and maturation. Several studies have now shown that VEGF is neurotrophic and neuroprotective independent of a vascular component; we suggest that VEGF plays seminal pleiotrophic roles in CNS development and repair.

PMID:
14657160
[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Write to the Help Desk