Send to:

Choose Destination
See comment in PubMed Commons below
Am J Physiol Heart Circ Physiol. 2004 Mar;286(3):H971-8. Epub 2003 Nov 26.

Developmental changes of intracellular Ca2+ transients in beating rat hearts.

Author information

  • 1Dept. of Physiology, Loyola Univ. Chicago, 2160 S. First Ave., Maywood, IL 60153, USA.

Erratum in

  • Am J Physiol Heart Circ Physiol. 2004 Jul;56(1):H433.


Postnatal maturation of the rat heart is characterized by major changes in the mechanism of excitation-contraction (E-C) coupling. In the neonate, the t tubules and sarcoplasmic reticulum (SR) are not fully developed yet. Consequently, Ca(2+)-induced Ca(2+) release (CICR) does not play a central role in E-C coupling. In the neonate, most of the Ca(2+) that triggers contraction comes through the sarcolemma. In this work, we defined the contribution of the sarcolemmal Ca(2+) entry and the Ca(2+) released from the SR to the Ca(2+) transient during the first 3 wk of postnatal development. To this end, intracellular Ca(2+) transients were measured in whole hearts from neonate rats by using the pulsed local field fluorescence technique. To estimate the contribution of each Ca(2+) flux to the global intracellular Ca(2+) transient, different pharmacological agents were used. Ryanodine was applied to evaluate ryanodine receptor-mediated Ca(2+) release from the SR, nifedipine for dihydropyridine-sensitive L-type Ca(2+) current, Ni(2+) for the current resulting from the reverse-mode Na(+)/Ca(2+) exchange, and mibefradil for the T-type Ca(2+) current. Our results showed that the relative contribution of each Ca(2+) flux changes considerably during the first 3 wk of postnatal development. Early after birth (1-5 days), the sarcolemmal Ca(2+) flux predominates, whereas at 3 wk of age, CICR from the SR is the most important. This transition may reflect the progressive development of the t tube-SR units characteristic of mature myocytes. We have hence directly defined in the whole beating heart the developmental changes of E-C coupling previously evaluated in single (acutely isolated or cultured) cells and multicellular preparations.

[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Write to the Help Desk