Display Settings:

Format

Send to:

Choose Destination
We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
Antimicrob Agents Chemother. 2003 Dec;47(12):3806-9.

5HT1A serotonin receptor agonists inhibit Plasmodium falciparum by blocking a membrane channel.

Author information

  • 1Department of Tropical Medicine and Medical Microbiology, John A Burns School of Medicine, University of Hawaii at Manoa, Honolulu, Hawaii 96816, USA. Christopher.locher@maxygen.com

Abstract

To identify new leads for the treatment of Plasmodium falciparum malaria, we screened a panel of serotonin (5-hydroxytryptamine [5HT]) receptor agonists and antagonists and determined their effects on parasite growth. The 5HT1A receptor agonists 8-hydroxy-N-(di-n-propyl)-aminotetralin (8-OH-DPAT), 2,5-dimethoxy-4-iodoamphetamine, and 2,5-dimethoxy-4-bromophenylethylamine inhibited the growth of P. falciparum in vitro (50% inhibitory concentrations, 0.4, 0.7, and 1.5 microM, respectively). In further characterizing the antiparasitic effects of 8-OH-DPAT, we found that this serotonin receptor agonist did not affect the growth of Leishmania infantum, Trypanosoma cruzi, Trypanosoma brucei brucei, or Trichostrongylus colubriformis in vitro and did not demonstrate cytotoxicity against the human lung fibroblast cell line MRC-5. 8-OH-DPAT had similar levels of growth inhibition against several different P. falciparum isolates having distinct chemotherapeutic resistance phenotypes, and its antimalarial effect was additive when it was used in combination with chloroquine against a chloroquine-resistant isolate. In a patch clamp assay, 8-OH-DPAT blocked a P. falciparum surface membrane channel, suggesting that serotonin receptor agonists are a novel class of antimalarials that target a nutrient transport pathway. Since there may be neurological involvement with the use of 8-OH-DPAT and other serotonin receptor agonists in the treatment of falciparum malaria, new lead compounds derived from 8-OH-DPAT will need to be modified to prevent potential neurological side effects. Nevertheless, these results suggest that 8-OH-DPAT is a new lead compound with which to derive novel antimalarial agents and is a useful tool with which to characterize P. falciparum membrane channels.

PMID:
14638487
[PubMed - indexed for MEDLINE]
PMCID:
PMC296210
Free PMC Article

Images from this publication.See all images (2)Free text

FIG. 1.
FIG. 2.
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk