Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
J Immunol. 2003 Dec 1;171(11):5913-20.

Control of NKT cell differentiation by tissue-specific microenvironments.

Author information

  • 1Department of Biochemistry, Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada. yyang@ucalgary.ca

Abstract

CD1d-restricted Valpha14 NKT cells play an important role in both Th1- and Th2-type immune responses. To determine whether NKT cells develop two functionally distinct subsets that provoke different types of responses, we examined the phenotypes and cellular functions of NK1.1(+) and DX5(+) T cells. We found that both NK1.1(+) and DX5(+) T cells are CD1d-restricted Valpha14 T cells with identical Ag specificities, phenotypes, tissue locations, and functions. Similar to the NK1.1 marker, the DX5 marker (CD49b) is expressed on mature NKT cells in both NK1.1 allele-positive and allele-negative strains. However, when NK1.1(+) and DX5(+) NKT cells isolated from different tissues were compared, we found that thymic and splenic NKT cells differed not only in their cytokine profiles, but also in their phenotype and requirements for costimulatory signals. Thymic NKT cells displayed the phenotype of activated T cells and could be fully activated by TCR ligation. In contrast, splenic NKT cells displayed the phenotype of memory T cells and required a costimulatory signal for activation. Furthermore, the function and phenotype of thymic and splenic NKT cells were modulated by APCs from various tissues that expressed different levels of costimulatory molecules. Modulation of NKT cell function and differentiation may be mediated by synergic effects of costimulatory molecules on the surface of APCs. The results of the present study suggest that the costimulatory signals of tissue-specific APCs are key factors for NKT cell differentiation, and these signals cannot be replaced by anti-CD28 or anti-CD40 ligand Abs.

PMID:
14634102
[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Write to the Help Desk