Format

Send to

Choose Destination
See comment in PubMed Commons below
J Immunol. 2003 Dec 1;171(11):5760-8.

Human CD25+ regulatory T cells maintain immune tolerance to nickel in healthy, nonallergic individuals.

Author information

  • 1Laboratory of Immunology, Istituto Dermopatico dell'Immacolata, Rome, Italy. cavani@idi.it

Abstract

We investigated the capacity of CD25(+) T regulatory cells (Treg) to modulate T cell responses to nickel, a common cause of allergic contact dermatitis. CD4(+) T cells isolated from the peripheral blood of six healthy, nonallergic individuals showed a limited capacity to proliferate in response to nickel in vitro, but responsiveness was strongly augmented (mean increment +/- SD, 240 +/- 60%) when cells were depleted of CD25(+) Treg. Although CD25(+) Treg were anergic to nickel, a small percentage up-regulated membrane CTLA-4 upon nickel exposure. CD25(+) Treg strongly and dose-dependently inhibited nickel-specific activation of CD25(-) T lymphocytes in coculture experiments in a cytokine-independent, but cell-to-cell contact-dependent, manner. Approximately 30% of circulating CD25(+) Treg expressed the cutaneous lymphocyte-associated Ag (CLA), and CLA(+)CD25(+) Treg were more efficient than CLA(-)CD25(+) cells in suppressing nickel responsiveness of CD25(-) T cells. The site of a negative patch test in response to nickel showed an infiltrate of CD4(+)CLA(+) cells and CD25(+) cells, which accounted for approximately 20% of the total T cells isolated from the tissue. Skin-derived T cells suppressed nickel-specific responses of peripheral blood CD25(-) T cells. In addition, 60 +/- 14% of peripheral blood CD25(+) Treg expressed the chemokine receptor CCR7 and strongly inhibited naive T cell activation in response to nickel. Finally, CD25(+) T cells isolated from peripheral blood of nickel-allergic patients showed a limited or absent capacity to suppress metal-specific CD4(+) and CD8(+) T cell responses. The results indicates that in healthy individuals CD25(+) Treg can control the activation of both naive and effector nickel-specific T cells.

PMID:
14634084
[PubMed - indexed for MEDLINE]
Free full text

Publication Types, MeSH Terms, Substances

Publication Types

MeSH Terms

Substances

PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Write to the Help Desk