Send to:

Choose Destination
See comment in PubMed Commons below
Mol Microbiol. 2003 Nov;50(4):1155-71.

The nuclear actin-related protein Act3p/Arp4p of Saccharomyces cerevisiae is involved in transcription regulation of stress genes.

Author information

  • 1Division of Molecular Genetics, Institute of Cancer Research, University of Vienna, A-1090 Vienna, Austria.


A mutational analysis of the essential nuclear actin-related protein of Saccharomyces cerevisiae, Act3p/Arp4p, was performed. The five residues chosen for substitution were amino acids conserved between actin and Act3p/Arp4p, the tertiary structure of which most probably resembles that of actin. Two thermosensitive (ts) mutants, a single and a double point mutant, and one lethal double point mutant were obtained. Both ts mutants were formamide-sensitive which supports a structural relatedness of Act3p/Arp4p to actin; they were also hypersensitive against hydroxyurea and ultraviolet irradiation pointing to a possible role of Act3p/Arp4p in DNA replication and repair. Their 'suppressor of Ty' (SPT) phenotype, observed with another ts mutant of Act3p/Arp4p before, suggested involvement of Act3p/Arp4p in transcription regulation. Accordingly, genome-wide expression profiling revealed misregulated transcription in a ts mutant of a number of genes, among which increased expression of various stress-responsive genes (many of them requiring Msn2p/Msn4p for induction) was the most salient result. This provides an explanation for the mutant's enhanced resistance to severe thermal and oxidative stress. Thus, Act3p/Arp4p takes an important part in the repression of stress-induced genes under non-stress conditions.

[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Wiley
    Loading ...
    Write to the Help Desk