20-hydroxyeicosatetraenoic acid (20-HETE) metabolism in coronary endothelial cells

J Biol Chem. 2004 Jan 23;279(4):2648-56. doi: 10.1074/jbc.M306849200. Epub 2003 Nov 11.

Abstract

We have investigated the role of endothelial cells in the metabolism of 20-hydroxyeicosatetraenoic acid (20-HETE), a vasoactive mediator synthesized from arachidonic acid by cytochrome P450 omega-oxidases. Porcine coronary artery endothelial cells (PCEC) incorporated 20-[(3)H]HETE primarily into the sn-2 position of phospholipids through a coenzyme A-dependent process. The incorporation was reduced by equimolar amounts of arachidonic, eicosapentaenoic or 8,9-epoxyeicosatrienoic acids, but some uptake persisted even when a 10-fold excess of arachidonic acid was available. The retention of 20-[(3)H]HETE increased substantially when methyl arachidonoyl fluorophosphonate, but not bromoenol lactone, was added, suggesting that a Ca(2+)-dependent cytosolic phospholipase A(2) released the 20-HETE contained in PCEC phospholipids. Addition of calcium ionophore A23187 produced a rapid release of 20-[(3)H]HETE from the PCEC, a finding that also is consistent with a Ca(2+)-dependent mobilization process. PCEC also converted 20-[(3)H]HETE to 20-carboxy-arachidonic acid (20-COOH-AA) and 18-, 16-, and 14-carbon beta-oxidation products. 20-COOH-AA produced vasodilation in porcine coronary arterioles, but 20-HETE was inactive. These results suggest that the incorporation of 20-HETE and its subsequent conversion to 20-COOH-AA in the endothelium may be important in modulating coronary vascular function.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Animals
  • Biological Transport, Active / drug effects
  • Calcimycin / pharmacology
  • Coronary Vessels / metabolism
  • Endothelium, Vascular / metabolism*
  • Hydroxyeicosatetraenoic Acids / metabolism*
  • Ionophores / pharmacology
  • Swine
  • Time Factors

Substances

  • Hydroxyeicosatetraenoic Acids
  • Ionophores
  • Calcimycin
  • 20-hydroxy-5,8,11,14-eicosatetraenoic acid