Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Mol Cell Biol. 2003 Dec;23(23):8704-17.

Smad-dependent recruitment of a histone deacetylase/Sin3A complex modulates the bone morphogenetic protein-dependent transcriptional repressor activity of Nkx3.2.

Author information

  • 1Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA.

Abstract

We have previously shown that Nkx3.2, a transcriptional repressor that is expressed in the sclerotome and developing cartilage, can activate the chondrocyte differentiation program in somitic mesoderm in a bone morphogenetic protein (BMP)-dependent manner. In this work, we elucidate how BMP signaling modulates the transcriptional repressor activity of Nkx3.2. We have found that Nkx3.2 forms a complex, in vivo, with histone deacetylase 1 (HDAC1) and Smad1 and -4 in a BMP-dependent manner. The homeodomain and NK domain of Nkx3.2 support the interaction of this transcription factor with HDAC1 and Smad1, respectively, and both of these domains are required for the transcriptional repressor activity of Nkx3.2. Furthermore, the recruitment of an HDAC/Sin3A complex to Nkx3.2 requires that Nkx3.2 interact with Smad1 and -4. Indeed, Nkx3.2 both fails to associate with the HDAC/Sin3A complex and represses target gene transcription in a cell line lacking Smad4, but it performs these functions if exogenous Smad4 is added to these cells. While prior work has indicated that BMP-dependent Smads can support transcriptional activation, our findings indicate that BMP-dependent Smads can also potentiate transcriptional repression, depending upon the identity of the Smad-interacting transcription factor.

PMID:
14612411
[PubMed - indexed for MEDLINE]
PMCID:
PMC262671
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk