Effector CD4 cell tolerization is mediated through functional inactivation and involves preferential impairment of TNF-alpha and IFN-gamma expression potentials

Cell Immunol. 2003 Aug;224(2):114-21. doi: 10.1016/j.cellimm.2003.08.008.

Abstract

It has recently been shown that effector/memory T cells can undergo peripheral tolerization in response to self-antigen. In the present study, we found that within 24h self-antigen profoundly impairs the ability of CD4 effectors to express TNF-alpha (and to a lesser extent IFN-gamma); however, several days of self-antigen exposure is required to impair non-effector functions such as IL-2 expression and proliferation. Since only half of the initial effector CD4 cell population expresses effector cytokines following brief antigenic stimulation, tolerization might have been mediated either through functional inactivation of effector-competent cells, or alternatively by the selective deletion of competent and expansion of non-competent cells. When briefly stimulated effectors were fractionated based on their expression of IFN-gamma, the IFN-gamma(-) sub-population was able to express IFN-gamma following secondary stimulation, indicating that all effector CD4 cells are functionally competent. Furthermore, both IFN-gamma(+) and IFN-gamma(-) sub-populations underwent tolerization in response to self-HA (although the former was slightly more prone to deletion at later time points). Thus, effector CD4 cell tolerization is mediated primarily through the functional inactivation of effector-competent cells.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Animals
  • CD4-Positive T-Lymphocytes / immunology*
  • Immune Tolerance*
  • Interferon-gamma / biosynthesis*
  • Mice
  • Mice, Transgenic
  • Tumor Necrosis Factor-alpha / biosynthesis*

Substances

  • Tumor Necrosis Factor-alpha
  • Interferon-gamma