Format

Send to:

Choose Destination
See comment in PubMed Commons below
Am J Physiol Lung Cell Mol Physiol. 2004 Mar;286(3):L521-30. Epub 2003 Nov 7.

Foxf1 haploinsufficiency reduces Notch-2 signaling during mouse lung development.

Author information

  • 1Department of Biochemistry and Molecular Genetics, College of Medicine, University of Illinois, Chicago, IL 60607-7170, USA. vkalin@uic.edu

Abstract

The forkhead box (Fox) f1 transcription factor is expressed in the mouse splanchnic (visceral) mesoderm, which contributes to development of the liver, gallbladder, lung, and intestinal tract. Pulmonary hemorrhage and peripheral microvascular defects were found in approximately half of the newborn Foxf1(+/-) mice, which expressed low levels of lung Foxf1 mRNA [low-Foxf1(+/-) mice]. Microvascular development was normal in the surviving newborn high-Foxf1(+/-) mice, which compensated for pulmonary Foxf1 haploinsufficiency and expressed wild-type Foxf1 levels. To identify expression of genes regulated by Foxf1, we used Affymetrix microarrays to determine embryonic lung RNAs influenced by Foxf1 haploinsufficiency. Embryonic Foxf1(+/-) lungs exhibited diminished expression of hepatocyte growth factor receptor c-Met, myosin VI, the transcription factors SP-3, BMI-1, ATF-2, and glucocorticoid receptor, and cell cycle inhibitors p53, p21(Cip1), retinoblastoma, and p107. Furthermore, Notch-2 signaling was decreased in embryonic Foxf1(+/-) lungs, as evidenced by significantly reduced levels of the Notch-2 receptor and the Notch-2 downstream target hairy enhancer of split-1. The severity of the Notch-2-signaling defect in 18-day postcoitus Foxf1(+/-) lungs correlated with Foxf1 mRNA levels. Disruption of pulmonary Notch-2 signaling continued in newborn low-Foxf1(+/-) mice, which died of lung hemorrhage and failed to compensate for Foxf1 haploinsufficiency. In contrast, in newborn high-Foxf1(+/-) lungs, Notch-2 signaling was restored to the level found in wild-type mice, which was associated with normal microvascular formation and survival. Foxf1 haploinsufficiency disrupted pulmonary expression of genes in the Notch-2-signaling pathway and resulted in abnormal development of lung microvasculature.

PMID:
14607778
[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Write to the Help Desk