Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Inorg Chem. 2003 Nov 17;42(23):7357-9.

Turning off phototriggered linkage isomerizations in ruthenium dimethyl sulfoxide complexes.

Author information

  • 1Department of Chemistry and Biochemistry, Ohio University, Athens, Ohio 45701, USA. rack@helios.phy.ohio.edu

Abstract

We report on the spectroscopy, electrochemistry, and linkage isomerization in a family of [Ru(tpy)(L2)(dmso)](z)()(+) complexes (tpy is 2,2':6',2' '-terpyridine, dmso is dimethyl sulfoxide, and L2 is a variable ligand: 2,2'-bipyridine (bpy), 2-picolinate (pic), N,N,N',N'-tetramethylethylenediamine (tmen), acetylacetonate (acac), or malonate (mal)). The identity of this bidentate ligand serves to tune the absorption maxima (lambda(max) = 419-502 nm) and the reduction potential (E(1/2) = 1.67 to 0.82 V) of these complexes. Photochemical and electrochemical studies show that S-->O and O-->S linkage isomerization may be triggered through an electron transfer mechanism, resulting in dramatic shifts in both the absorption maxima and the reduction potential (for [Ru(tpy)(pic)(dmso)](+) S-bonded, 421 nm, 1.38 V vs Ag/AgCl; O-bonded, 527 nm, 1.38 V vs Ag/AgCl). Certain of these complexes [Ru(tpy)(acac)(dmso)](+) and [Ru(tpy)(mal)(dmso)] do not undergo isomerization. These results are discussed in the context of electron transfer triggered isomerization.

PMID:
14606824
[PubMed]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Icon for American Chemical Society
    Loading ...
    Write to the Help Desk