Format

Send to:

Choose Destination
See comment in PubMed Commons below
Oncogene. 2003 Nov 6;22(50):8212-20.

Retinoic acid receptors interfere with the TGF-beta/Smad signaling pathway in a ligand-specific manner.

Author information

  • 1INSERM U532, Université Paris VII, Institut de Recherche sur la Peau, Pavillon Bazin, Hôpital Saint-Louis, 1, avenue Claude Vellefaux, F-75475 Paris Cedex 10, France.

Abstract

Transforming growth factor-beta (TGF-beta) and retinoic acid (RA) are important regulators of cell growth and differentiation. The TGF-beta receptors utilize Smad proteins to transduce signals intracellularly and regulate transcription of target genes, either directly or in combination with other sequence-specific transcription factors. Two classes of nuclear receptors, the retinoic acid receptors (RARs) and the retinoic X receptors, are involved in mediating transcriptional responses to RA. Given the known interactions between the TGF-beta and RAR pathways, we have investigated the role played by RAR ligands in modulating functional interactions between Smad3 and RARs. Using transient cell transfection experiments with an artificial Smad3/Smad4-dependent reporter construct, we demonstrate that RAR overexpression enhances Smad-driven transactivation, an effect that requires both Smad3 and Smad4. We provide evidence that RAR effect on Smad3/Smad4-driven transcription is prevented by natural and synthetic RAR agonists, and potentiated by synthetic RAR antagonists. The activity of two TGF-beta-responsive human gene promoter constructs was regulated in a parallel fashion. Using both mammalian two-hybrid and immunoprecipitation/Western methods, we demonstrate a direct interaction between the region DEF of RARgamma and the MH2 domain of Smad3, inhibited by RAR agonists and enhanced by their antagonists. We propose that RARs may function as coactivators of the Smad pathway in the absence of RAR agonists or in the presence of their antagonists, a phenomenon that contrasts with their known role as agonist-activated transcriptional regulators of RA-dependent genes.

PMID:
14603262
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Nature Publishing Group
    Loading ...
    Write to the Help Desk