Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Am J Physiol Endocrinol Metab. 2004 Mar;286(3):E488-94. Epub 2003 Nov 4.

Additive effects of cortisol and growth hormone on regional and systemic lipolysis in humans.

Author information

  • 1Department of Endocrinology and Diabetes, University Hospital of Aarhus, Aarhus Kommunehospital, DK-8000 Aarhus C, Denmark.

Abstract

Growth hormone (GH) and cortisol are important to ensure energy supplies during fasting and stress. In vitro experiments have raised the question whether GH and cortisol mutually potentiate lipolysis. In the present study, combined in vivo effects of GH and cortisol on adipose and muscle tissue were explored. Seven lean males were examined four times over 510 min. Microdialysis catheters were inserted in the vastus lateralis muscle and in the subcutaneous adipose tissue of the thigh and abdomen. A pancreatic-pituitary clamp was maintained with somatostatin infusion and replacement of GH, insulin, and glucagon at baseline levels. At t = 150 min, administration was performed of NaCl (I), a 2 microg.kg(-1).min(-1) hydrocortisone infusion (II), a 200-microg bolus of GH (III), or a combination of II and III (IV). Systemic free fatty acid (FFA) turnover was estimated by [9,10-3H]palmitate appearance. Circulating levels of glucose, insulin, and glucagon were comparable in I-IV. GH levels were similar in I and II (0.50 +/- 0.08 microg/l, mean +/- SE). Peak levels during III and IV were approximately 9 microg/l. Cortisol levels rose to approximately 900 nmol/l in II and IV. Systemic (i.e., palmitate fluxes, s-FFA, s-glycerol) and regional (interstitial adipose tissue and skeletal muscle) markers of lipolysis increased in response to both II and III. In IV, they were higher and equal to the isolated additive effects of the two hormones. In conclusion, we find that GH and cortisol stimulate systemic and regional lipolysis independently and in an additive manner when coadministered. On the basis of previous studies, we speculate that the mode of action is mediated though different pathways.

PMID:
14600073
[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Icon for HighWire
    Loading ...
    Write to the Help Desk