Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
J Biol Chem. 2004 Jan 16;279(3):1703-12. Epub 2003 Oct 29.

Necdin-related MAGE proteins differentially interact with the E2F1 transcription factor and the p75 neurotrophin receptor.

Author information

  • 1Division of Regulation of Macromolecular Functions, Institute for Protein Research, Osaka University, Yamadaoka 3-2, Suita, Osaka 565-0871, Japan.

Abstract

Necdin is a growth suppressor expressed predominantly in postmitotic neurons and implicated in their terminal differentiation. Necdin shows a moderate homology to the MAGE family proteins, the functional roles of which are largely unknown. Human genes encoding necdin, MAGEL2 (necdin-like 1), and MAGE-G1 (necdin-like 2) are located in proximal chromosome 15q, a region associated with neurodevelopmental disorders such as Prader-Willi syndrome, Angelman syndrome, and autistic disorder. The necdin and MAGEL2 genes are subjected to genomic imprinting and suggested to be involved in the etiology of Prader-Willi syndrome. In this study, we compared biochemical and functional characteristics of murine orthologs of these necdin-related MAGE proteins. The colony formation and bromodeoxyuridine incorporation analyses revealed that necdin and MAGE-G1, but not MAGEL2, induced growth arrest. Necdin and MAGE-G1 interacted with the transcription factor E2F1 via its transactivation domain, repressed E2F1-dependent transcription, and antagonized E2F1-induced apoptosis of N1E-115 neuroblastoma cells. In addition, necdin and MAGE-G1 interacted with the p75 neurotrophin receptor via its distinct intracellular domains. In contrast, MAGEL2 failed to bind to these necdin interactors, suggesting that MAGEL2 has no necdin-like function in developing brain. Overexpression of p75 translocated necdin and MAGE-G1 in the proximity of the plasma membrane and reduced their association with E2F1 to facilitate E2F1-induced death of neuroblastoma cells. These results suggest that necdin and MAGE-G1 target both E2F1 and p75 to regulate cell viability during brain development.

PMID:
14593116
[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Icon for HighWire
    Loading ...
    Write to the Help Desk