Genotoxic effects of volatile organic compounds in a chemical factory as evaluated by the Tradescantia micronucleus assay and by chemical analysis

Mutat Res. 2003 Nov 10;541(1-2):55-61. doi: 10.1016/s1383-5718(03)00183-9.

Abstract

The clastogenic effects of volatile organic compounds in the workplace air of a chemical factory were studied by means of the Tradescantia micronucleus (Trad-MCN) assay and chemical analysis. Sampling was performed at a chemical factory producing PVC film in Cheong-ju, South Korea. Inflorescences of Tradescantia BNL 4430 were placed for 2, 6, and 9 h at the height of 1.40 m at two locations in the workplace and one outdoor of the chemical industry. Air samplings were conducted in the same places and the collected tube samples were analyzed by automatic thermal desorption/gas chromatography/mass spectrometry (ATD/GC/MS). The frequencies of micronuclei in specimens exposed for 2 h in sites 1-3 were 6.13 +/- 0.47, 5.40 +/- 1.60, and 2.93 +/- 0.43 MCN per 100 tetrads, respectively. GC/MS analysis proved the presence of various volatile organic compounds such as trichloroethylene, toluene, ethyl benzene, (m, p, o)-xylene, styrene, 1,3,5-trimethyl benzene, and 1,2,4-trimethyl benzene. Mean values of toluene measured by 2 h sampling in sites 1-3 were 1946.6, 1368.3, and 340.1 microg/m3, respectively. The toluene concentrations in sites 1 and 2 were at least four to six times higher than that in site 3. The micronucleus frequencies increased with exposure time. In addition, there was a correlation between the micronucleus frequencies and toluene concentration in the air (R2 = 0.96). The results of this in situ monitoring proved the applicability of the Trad-MCN assay combined with chemical analysis for monitoring genotoxic chemicals in the work environment.

MeSH terms

  • Air Pollutants, Occupational / toxicity*
  • Chemical Industry*
  • Micronucleus Tests / methods*
  • Organic Chemicals / toxicity*
  • Tradescantia / drug effects*
  • Volatilization
  • Workplace

Substances

  • Air Pollutants, Occupational
  • Organic Chemicals