Format

Send to

Choose Destination
See comment in PubMed Commons below
Biochem Pharmacol. 2003 Oct 15;66(8):1403-8.

Regulation of proliferation, survival and apoptosis by members of the TNF superfamily.

Author information

  • 1Cytokine Research Laboratory, Department of Bioimmunotherapy, The University of Texas M.D. Anderson Cancer Center, Box 143, 1515 Holcombe Boulevard, Houston, TX 77030, USA.

Abstract

Tumor necrosis factor (TNF) was first identified in 1984 as a cytokine with anti-tumor effects in vitro and in vivo. Extensive research since then has shown that there are at least 18 distinct members of the TNF super family and they exhibit 15-25% amino acid sequence homology with each other. These family members bind to distinct receptors, which are homologous in their extracellular domain. These cytokines have been implicated in a wide variety of diseases including tumorigenesis, septic shock, viral replication, bone resorption, rheumatoid arthritis, diabetes, and other inflammatory diseases. TNF blockers have been approved for human use in treating some of these conditions in the United States and other countries. Various members of the TNF super family mediate either proliferation, survival, or apoptosis of cells. Although distinct receptors, all members share a common cell signaling pathway that mediates the activation of nuclear factor-kappaB (NF-kappaB) and mitogen-activated protein kinases (e.g. c-jun N-terminal kinase). Regulation of cell growth and activation of NF-kappaB and of c-jun N-terminal kinase by the TNF super family is mediated through sequential activation/association of a set of cell signaling proteins named TNF receptor-associated factors, Fas-associated death domain and FADD-like ICE, caspases, receptor-interacting protein, NF-kappaB-inducing kinases, and IkappaBalpha kinases. Both apoptotic and antiapoptotic signals are activated simultaneously by the same cytokine in the same cell. Together these cytokines regulate cell growth/survival/apoptosis in a complex dance of changing partners and overlapping steps.

PMID:
14555214
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Write to the Help Desk