Display Settings:


Send to:

Choose Destination
See comment in PubMed Commons below
FEBS Lett. 2003 Sep 25;552(2-3):231-9.

Computational analysis of hydrogen bonds in protein-RNA complexes for interaction patterns.

Author information

  • 1School of Computer Science and Engineering, Inha University, 402-751 Inchon, South Korea.


Structural analysis of protein-RNA complexes is labor-intensive, yet provides insight into the interaction patterns between a protein and RNA. As the number of protein-RNA complex structures reported has increased substantially in the last few years, a systematic method is required for automatically identifying interaction patterns. This paper presents a computational analysis of the hydrogen bonds in the most representative set of protein-RNA complexes. The analysis revealed several interesting interaction patterns. (1) While residues in the beta-sheets favored unpaired nucleotides, residues in the helices showed no preference and residues in turns favored paired nucleotides. (2) The backbone hydrogen bonds were more dominant than the base hydrogen bonds in the paired nucleotides, but the reverse was observed in the unpaired nucleotides. (3) The protein-RNA complexes contained more paired nucleotides than unpaired nucleotides, but the unpaired nucleotides were observed more frequently interacting with the proteins. And (4) Arg-U, Thr-A, Lys-A, and Asn-U were the most frequently observed pairs. The interaction patterns discovered from the analysis will provide us with useful information in predicting the structure of the RNA binding protein and the structure of the protein binding RNA.

[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Write to the Help Desk