Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
J Biol Chem. 2003 Dec 12;278(50):49929-35. Epub 2003 Sep 30.

Endothelin-1 activates endothelial cell nitric-oxide synthase via heterotrimeric G-protein betagamma subunit signaling to protein jinase B/Akt.

Author information

  • 1Duke University Liver Center, Duke University Medical Center, Durham, North Carolina 27710, USA.

Abstract

Endothelin-1 has dual vasoactive effects, mediating vasoconstriction via ETA receptor activation of vascular smooth muscle cells and vasorelaxation via ETB receptor activation of endothelial cells. Although it is commonly accepted that endothelin-1 binding to endothelial cell ETB receptors stimulates nitric oxide (NO) synthesis and subsequent smooth muscle relaxation, the signaling pathways downstream of ETB receptor activation are unknown. Here, using a model in which we have utilized isolated primary endothelial cells, we demonstrate that ET-1 binding to sinusoidal endothelial cell ETB receptors led to increased protein kinase B/Akt phosphorylation, endothelial cell nitric-oxide synthase (eNOS) phosphorylation, and NO synthesis. Furthermore, eNOS activation was not dependent on tyrosine phosphorylation, and pretreatment of endothelial cells with pertussis toxin as well as overexpression of a dominant negative G-protein-coupled receptor kinase construct that sequesters betagamma subunits inhibited Akt phosphorylation and NO synthesis. Taken together, the data elucidate a G-protein-coupled receptor signaling pathway for ETB receptor-mediated NO production and call attention to the absolute requirement for heterotrimeric G-protein betagamma subunits in this cascade.

PMID:
14523027
[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Write to the Help Desk