Format

Send to:

Choose Destination
See comment in PubMed Commons below
Br J Cancer. 2003 Oct 6;89(7):1375-82.

Role of glucose and ketone bodies in the metabolic control of experimental brain cancer.

Author information

  • 1Biology Department, Boston College, Chestnut Hill, MA 02467, USA. thomas.seyfried@bc.edu

Abstract

Brain tumours lack metabolic versatility and are dependent largely on glucose for energy. This contrasts with normal brain tissue that can derive energy from both glucose and ketone bodies. We examined for the first time the potential efficacy of dietary therapies that reduce plasma glucose and elevate ketone bodies in the CT-2A syngeneic malignant mouse astrocytoma. C57BL/6J mice were fed either a standard diet unrestricted (SD-UR), a ketogenic diet unrestricted (KD-UR), the SD restricted to 40% (SD-R), or the KD restricted to 40% of the control standard diet (KD-R). Body weights, tumour weights, plasma glucose, beta-hydroxybutyrate (beta-OHB), and insulin-like growth factor 1 (IGF-1) were measured 13 days after tumour implantation. CT-2A growth was rapid in both the SD-UR and KD-UR groups, but was significantly reduced in both the SD-R and KD-R groups by about 80%. The results indicate that plasma glucose predicts CT-2A growth and that growth is dependent more on the amount than on the origin of dietary calories. Also, restriction of either diet significantly reduced the plasma levels of IGF-1, a biomarker for angiogenesis and tumour progression. Owing to a dependence on plasma glucose, IGF-1 was also predictive of CT-2A growth. Ketone bodies are proposed to reduce stromal inflammatory activities, while providing normal brain cells with a nonglycolytic high-energy substrate. Our results in a mouse astrocytoma suggest that malignant brain tumours are potentially manageable with dietary therapies that reduce glucose and elevate ketone bodies.

PMID:
14520474
[PubMed - indexed for MEDLINE]
PMCID:
PMC2394295
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Nature Publishing Group Icon for PubMed Central
    Loading ...
    Write to the Help Desk