Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Genome Biol. 2003;4(10):R63. Epub 2003 Sep 11.

Adult midgut expressed sequence tags from the tsetse fly Glossina morsitans morsitans and expression analysis of putative immune response genes.

Author information

  • 1School of Biological Sciences, University of Wales, Bangor, LL57 2UW, UK. m.j.lehane@bangor.ac.uk

Abstract

BACKGROUND:

Tsetse flies transmit African trypanosomiasis leading to half a million cases annually. Trypanosomiasis in animals (nagana) remains a massive brake on African agricultural development. While trypanosome biology is widely studied, knowledge of tsetse flies is very limited, particularly at the molecular level. This is a serious impediment to investigations of tsetse-trypanosome interactions. We have undertaken an expressed sequence tag (EST) project on the adult tsetse midgut, the major organ system for establishment and early development of trypanosomes.

RESULTS:

A total of 21,427 ESTs were produced from the midgut of adult Glossina morsitans morsitans and grouped into 8,876 clusters or singletons potentially representing unique genes. Putative functions were ascribed to 4,035 of these by homology. Of these, a remarkable 3,884 had their most significant matches in the Drosophila protein database. We selected 68 genes with putative immune-related functions, macroarrayed them and determined their expression profiles following bacterial or trypanosome challenge. In both infections many genes are downregulated, suggesting a malaise response in the midgut. Trypanosome and bacterial challenge result in upregulation of different genes, suggesting that different recognition pathways are involved in the two responses. The most notable block of genes upregulated in response to trypanosome challenge are a series of Toll and Imd genes and a series of genes involved in oxidative stress responses.

CONCLUSIONS:

The project increases the number of known Glossina genes by two orders of magnitude. Identification of putative immunity genes and their preliminary characterization provides a resource for the experimental dissection of tsetse-trypanosome interactions.

PMID:
14519198
[PubMed - indexed for MEDLINE]
PMCID:
PMC328452
Free PMC Article

Images from this publication.See all images (2)Free text

Figure 1
Figure 2
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for BioMed Central Icon for PubMed Central
    Loading ...
    Write to the Help Desk