Send to

Choose Destination
See comment in PubMed Commons below
J Am Chem Soc. 2003 Oct 8;125(40):12161-71.

Stable (long-bonded) dimers via the quantitative self-association of different cationic, anionic, and uncharged pi-radicals: structures, energetics, and optical transitions.

Author information

  • 1Department of Chemistry, University of Houston, Houston, Texas 77204-5003, USA.


Unusual dimers with wide interplanar separations, that is, very long bonds with d(D) approximately 3.05 A, are common to the spontaneous self-association of various organic pi-radicals in solution and in the crystalline solid state, independent of whether they are derived from negatively charged anion radicals of planar electron acceptors (TCNE-*, TCNQ-*, DDQ-*, CA-*), positively charged biphenylene cation-radical (OMB+*), or neutral phenalene radical (PHEN*). All dimeric species are characterized by intense absorption bands in the near-IR region that are diagnostic of the charge-transfer transitions previously identified with intermolecular associations of various electron-donor/acceptor dyads. The extensive delocalizations of a pair of pi-electrons accord with the sizable values of (i) the enthalpies (-Delta H(D)) and entropies (-Delta S(D)) of pi-dimerization measured by quantitative UV-vis/EPR spectroscopies and (ii) the electronic coupling element H(ab) evaluated from the strongly allowed optical transitions, irrespective of whether the diamagnetic dimeric species bear a double-negative charge as in (TCNE)(2)(2-), (TCNQ)(2)(2-), (DDQ)(2)(2-), (CA)(2)(2-) or a double-positive charge as in (OMB)(2)(2+) or are uncharged as in (PHEN)(2). These long-bonded dimers persist in solution as well as in the solid state and suffer only minor perturbations with Delta d(D) < 10% from extra-dimer forces that may be imposed by counterion electrostatics, crystal packing, and so forth. The characteristic optical transitions in such diamagnetic two-electron dimers are shown to be related to those in the corresponding paramagnetic one-electron pimers of the same pi-radicals with their parent acceptor, both in general accord with Mulliken theory.

PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for American Chemical Society
    Loading ...
    Write to the Help Desk