Reconstruction of the ancestral karyotype of eutherian mammals

Chromosome Res. 2003;11(6):605-18. doi: 10.1023/a:1024957002755.

Abstract

Applying the parsimony principle, i.e. that chromosomes identical in species belonging to different taxa were likely to be present in their common ancestor, the ancestral karyotype of eutherian mammals (about 100 million years old) was tentatively reconstructed. Comparing chromosome banding with all ZOO-FISH data from literature or studied by us, this reconstruction can be proposed with only limited uncertainties. This karyotype comprised 50 chromosomes of which 40-42 were acrocentrics. Ten ancestral pairs of chromosomes were homologous to a single human chromosome: 5, 6, 9, 11, 13, 17, 18, 20, X and Y (human nomenclature). Nine others were homologous to a part of a human chromosome: 1p + q (proximal), 1q, 2p + q (proximal), 2q, part of 7, 8q, 10p, 10q and 19p (human nomenclature). Finally, seven pairs of chromosomes, homologs to human chromosomes 3 + 21, 4 + 8p, part of 7 + 16p, part of 12 + part of 22 (twice), 14 + 15, 16q + 19q, formed syntenies disrupted in man.

Publication types

  • Comparative Study

MeSH terms

  • Animals
  • Chromosome Banding
  • Chromosome Painting
  • Chromosomes / genetics*
  • Evolution, Molecular*
  • Humans
  • Karyotyping
  • Mammals / genetics*