Format

Send to:

Choose Destination
See comment in PubMed Commons below
Biochem Biophys Res Commun. 2003 Oct 10;310(1):104-8.

Copper modulates activities of genistein, nitric oxide, and curcumin in breast tumor cells.

Author information

  • 1Department of Family Medicine and Community Health, Tufts University School of Medicine, 136 Harrison Avenue, Boston, MA 02111, USA. surendra.verma@tufts.edu

Abstract

Several papers have reported that low level of genistein (<8 microM), the major bioactive component of isoflavones, stimulates the growth of MCF-7 cells. In the present study, we found that genistein-induced growth stimulation of MCF-7 cells is inhibited in the presence of Cu(2+) (5 microM). Genistein induces the release of nitric oxide in MCF-7 cells in a concentration-dependent manner. The release of nitric oxide was inhibited by N(G)-nitro-L-arginine methyl ester, suggesting the possibility of the activation of nitric oxide synthase. The growth of MCF-7 cells also increases in the presence of low levels of sodium nitriprusside (<10 microM), a nitric oxide donor compound, while high levels (>25 microM) are toxic. The sodium nitroprusside-induced growth of MCF-7 cells is drastically suppressed in the presence of Cu(2+) (5 microM). This parallel behavior between Cu(2+)-genistein and Cu(2+)-sodium nitroprusside mixtures suggests that Cu(2+) and/or copper-protein complexes, that may be formed in the media, may be reacting with nitric oxide or nitric oxide-derived reactive species. The products of these reactions may be responsible for the toxic effects of these mixtures. In contrast, the effect of curcumin that inhibits the growth of both estrogen receptor-positive and -negative breast tumor cells appreciably decreased in the presence of Cu(2+). Since copper is known to overwhelmingly bind with proteins, present data suggest that an increase in copper-protein moieties or complexes formed in the serum containing media and their reactions with nitric oxide may be responsible for their toxic effects. Further studies are needed to characterize these reactions.

PMID:
14511655
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Write to the Help Desk