Format

Send to:

Choose Destination
See comment in PubMed Commons below
Annu Rev Plant Biol. 2003;54:109-36.

Nitric oxide: the versatility of an extensive signal molecule.

Author information

  • 1Instituto de Investigaciones Biológicas, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, CC 1245, Argentina. lolama@mdp.edu.ar

Abstract

Nitric oxide (NO) is a small highly diffusible gas and a ubiquitous bioactive molecule. Its chemical properties make NO a versatile signal molecule that functions through interactions with cellular targets via either redox or additive chemistry. In plants, NO plays a role in a broad spectrum of pathophysiological and developmental processes. Although nitric oxide synthase (NOS)-dependent NO production has been reported in plants, no gene, cDNA, or protein has been isolated to date. In parallel, precise and regulated NO production can be measured from the activity of the ubiquitous enzyme nitrate reductase (NR). In addition to endogenous NO formation, high NO emissions are observed from fertilized soils, but their effects on the physiology of plants are largely unknown. Many environmental and hormonal stimuli are transmitted either directly or indirectly by NO signaling cascades. The ability of NO to act simultaneously on several unrelated biochemical nodes and its redox homeostatic properties suggest that it might be a synchronizing molecule in plants.

PMID:
14502987
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Atypon
    Loading ...
    Write to the Help Desk