Format

Send to:

Choose Destination
See comment in PubMed Commons below
J Pharmacol Sci. 2003 Sep;93(1):30-4.

New aspects of neurotransmitter release and exocytosis: involvement of Ca2+/calmodulin-dependent phosphorylation of synapsin I in insulin exocytosis.

Author information

  • 1Department of Pharmacology, Kumamoto University School of Medicine, Kumamoto, Japan. hideyuki@gpo.kumamoto-u.ac.jp

Abstract

The exocytosis of insulin from pancreatic beta-cells is closely related to intracellular elevation of Ca(2+). The effects of Ca(2+) may be mediated by Ca(2+)/calmodulin-dependent protein kinase II (CaMKII). Four subunits of CaMKII, termed alpha, beta, gamma, and delta, are encoded by distinct genes, and various isoforms of these subunits exist as different splicing variants. In the brain, phosphorylation of synapsin I by the alpha isoform induces neurotransmitter release. In order to clarify whether phosphorylation of synapsin I by CaMKII was involved in insulin exocytosis, we cloned the isoforms of CaMKII and synapsin I from mouse insulinoma MIN6 cells. We found that beta'e and delta2 are the major isoforms of CaMKII and that synapsin Ib is a major isoform of synapsin I in MIN6 cells. It was interesting that delta2 and synapsin Ib were co-localized with insulin secretory granules in the cells. Treatment of MIN6 cells with glucose and tolbutamide rapidly activated CaMKII. Immunoblot analysis with two antibodies against synapsin I phosphorylated by CaMKII demonstrated the increase in phosphorylation of synapsin I by the secretagogues. Furthermore, the secretagogue-induced phosphorylation of synapsin I and insulin secretion were potentiated by transient overexpression of the beta'e or delta2 isoform. These results suggest that activation of CaMKII and the concomitant phosphorylation of synapsin I induce insulin exocytosis from pancreatic beta-cells.

PMID:
14501148
[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for J-STAGE, Japan Science and Technology Information Aggregator, Electronic
    Loading ...
    Write to the Help Desk