Send to:

Choose Destination
See comment in PubMed Commons below
Cell Biol Int Rep. 1992 Aug;16(8):811-26.

Localization of nuclear matrix core filament proteins at interphase and mitosis.

Author information

  • 1Dept. Biology, Massachusetts Institute of Technology, Cambridge 02139.


The gentle removal of chromatin uncovers a nuclear matrix consisting of two parts: a nuclear lamina connected to the intermediate filaments of the cytoskeleton and an internal matrix of thick, polymorphic fibers connecting the lamina to masses in the nuclear interior. This internal nuclear matrix can be further fractionated to uncover a highly branched network of 9 nm and 13 nm core filaments retaining some enmeshed bodies. The core filament network retains most of the nuclear RNA, as well as the fA12RNP antigen, and may be the most basic or core element of internal nuclear structure. One high molecular weight protein component of the core filament network, the H1B2 antigen, is normally masked in the interphase nucleus and is uncovered as the chromatin condenses at mitosis. This protein is associated with a fibrogranular network surrounding and connected to the chromosomes. The core filament-associated fA12 antigen also becomes associated with this perichromosomal network. We propose that the core filament nuclear matrix structure may not completely disassemble at mitosis but, rather, that parts remain as a structural network connected to chromosomes and other mitotic structures. These mitotic networks may, in turn, serve as the core structures on which the nuclear matrices of daughter cells are built.

[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Loading ...
    Write to the Help Desk