Format

Send to:

Choose Destination
See comment in PubMed Commons below
J Biol Chem. 1992 Nov 5;267(31):22407-13.

Molecular cloning of AMP deaminase isoform L. Sequence and bacterial expression of human AMPD2 cDNA.

Author information

  • 1Department of Cellular Biology and Anatomy, Medical College of Wisconsin, Milwaukee 53226.

Abstract

Human AMPD2 cDNA clones have been isolated from T-lymphoblast and placental lambda gt11 libraries utilizing a previously cloned rat partial AMPD2 cDNA as the probe. Alignment analysis of all cDNA clones indicates the presence of intervening sequences in several placental isolates. This has been confirmed by sequencing human AMPD2 genomic clones. Intervening sequences can be removed from the cDNA clones by restriction with endonucleases at unique sites within the proposed open reading frame. This results in a 3292-base pair cDNA proposed to contain the entire AMPD2 open reading frame, which would encode a 760-amino acid polypeptide with a predicted subunit molecular mass of 88.1 kDa. Nucleotide and predicted amino acid comparisons with the 264 base pairs of proposed coding sequences in the rat AMPD2 cDNA demonstrate 91% similarity and identity, respectively. A comparison of the predicted human AMPD1 and AMPD2 polypeptides demonstrates homology in their C-terminal domains. Included in this region is the conserved motif, SLSTDDP, proposed to be part of the catalytic site of all AMP deaminases. In contrast, the predicted N-terminal domains of the human AMPD1 and AMPD2 polypeptides are unique. When placed in a prokaryotic expression vector, the human AMPD2 cDNA expresses AMP deaminase activity which can be precipitated with polyclonal antisera specific for isoform L.

PMID:
1429593
[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Write to the Help Desk