Format

Send to:

Choose Destination
See comment in PubMed Commons below
J Cell Biochem. 1992 Jun;49(2):128-36.

Oncogene expression in mammary epithelial cells.

Author information

  • 1Friedrich Miescher Institute, Basel, Switzerland.

Abstract

Mouse strains which develop tumors at a high incidence with characteristics very similar to human cancers have been derived over the last 8 years. The tumors are caused by defined genetic alterations in the mouse genome. Three areas of research have contributed to the derivation of these mouse strains: (1) Molecular analysis of human tumors has shown that distinct oncogenes and tumor suppressor genes are consistently involved in a high percentage of primary tumors. (2) Regulatory enhancer-promoter sequences have been identified which direct gene expression to specific target cells, preferentially mammary epithelial cells. (3) The introduction of recombinant DNA molecules into fertilized mouse eggs by microinjection and integration of the injected DNA into the genome of injected cells has given rise to mutant mouse strains with unique and defined genetic alterations. Studies with different promoter-oncogene combinations introduced into transgenic mouse strains have led to the following general conclusions: (1) Oncogenes expressed in mammary gland cells predispose transgenic mice to mammary tumors. (2) The oncogenic potential of individual oncogenes in mammary epithelial cells differs. (3) Oncogene expression initially often causes a preneoplastic state affecting growth and differentiation parameters of cells. (4) The expression of different oncogenes synergizes to reduce tumor latency. Synergism can also be observed with physiological growth signals like estrogen or growth hormone. The oncogenes with a role in mammary carcinomas which have been investigated in transgenic mice will be described here. The phenotypic consequences of oncogene expression and the implications for the multistep carcinogenesis model will be discussed.

Comment in

PMID:
1400620
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Loading ...
    Write to the Help Desk