Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
J Biol Chem. 1992 Oct 15;267(29):20746-51.

Nitrilase from Rhodococcus rhodochrous J1. Sequencing and overexpression of the gene and identification of an essential cysteine residue.

Author information

  • 1Department of Agricultural Chemistry, Faculty of Agriculture, Kyoto University, Japan.

Abstract

The amino acid sequences of the NH2 terminus and internal peptide fragments of a Rhodococcus rhodochrous J1 nitrilase were determined to prepare synthetic oligonucleotides as primers for the polymerase chain reaction. A 750-base DNA fragment thus amplified was used as the probe to clone a 5.4-kilobase PstI fragment coding for the whole nitrilase. The nitrilase gene modified in the sequence upstream from the presumed ATG start codon was expressed to approximately 50% of the total soluble protein in Escherichia coli. The predicted amino acid sequence of the nitrilase gene showed similarity to that of the bromoxynil nitrilase from Klebsiella ozaenae. The 5,5'-dithiobis(2-nitrobenzoic acid) modification of the nitrilase from R. rhodochrous J1 resulted in inactivation with the loss of one sulfhydryl group/enzyme subunit. Of 4 cysteine residues in the Rhodococcus nitrilase, only Cys-165 is conserved in the Klebsiella nitrilase. Mutant enzymes containing Ala or Ser instead of Cys-165 did not exhibit nitrilase activity. These findings suggest that Cys-165 plays an essential role in the function of the active site.

PMID:
1400390
[PubMed - indexed for MEDLINE]
Free full text

LinkOut - more resources

Full Text Sources

Molecular Biology Databases

Research Materials

PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Write to the Help Desk