Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Biochemistry. 1992 Oct 6;31(39):9319-24.

Neither delta- nor lambda-tris(phenanthroline)ruthenium(II) binds to DNA by classical intercalation.

Author information

  • 1Department of Biochemistry, University of Mississippi Medical Center, Jackson 39216-4505.

Abstract

Equilibrium binding studies and viscosity experiments are described that characterize the interaction of delta- and lambda-[Ru(o-phen)3]2+ with calf thymus DNA. The mode of binding of these compounds to DNA is a matter of controversy. Both isomers of [Ru(o-phen)3]2+ were found to bind but weakly to DNA, with binding constants of 4.9 (+/- 0.3) x 10(4) M-1 and 2.8 (+/- 0.2) x 10(4) M-1 determined for the delta and lambda isomers, respectively, at 20 degrees C in a solution containing 5 mM Tris-HCl (pH 7.1) and 10 mM NaCl. We determined that the quantity delta log K/delta log [Na+] equals 1.37 and 1.24 for the delta and lambda isomers, respectively. Application of polyelectrolyte theory allows us to use these values to show quantitatively that both the delta and lambda isomers are essentially electrostatically bound to DNA. Viscosity experiments show that binding the lambda isomer does not alter the relative viscosity of DNA to any appreciable extent, while binding of the delta isomer decreases the relative viscosity of DNA. From these viscosity results, we conclude that neither isomer of [Ru(o-phen)3]2+ binds to DNA by classical intercalation.

PMID:
1390718
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Loading ...
    Write to the Help Desk