Format

Send to:

Choose Destination
See comment in PubMed Commons below
J Cell Physiol. 1992 Sep;152(3):587-98.

Immunocytochemical localization of annexin V (CaBP33), a Ca(2+)-dependent phospholipid- and membrane-binding protein, in the rat nervous system and skeletal muscles and in the porcine heart.

Author information

  • 1Department of Experimental Medicine and Biochemical Sciences, University of Perugia, Italy.

Abstract

We investigated the ultrastructural localization of annexin V a Ca(2+)-dependent phospholipid- and membrane-binding protein in the nervous system, heart, and skeletal muscles. The results indicate that in the cerebellum the protein is restricted to glial cells, where it is found diffusely in the cytoplasm as well as associated with plasma membranes. Bergmann glial cell bodies and processes and astrocytes in the cerebellar cortex and oligodendrocytes in the cerebellar white matter displayed an intense immune reaction product. In sciatic nerves, the protein was exclusively found in Schwann cells with a subcellular localization similar to that seen in glial cells in the cerebellum. Pituicytes in the neurohypophysis were intensely immunostained, whereas axons were not. In the heart, annexin V was restricted to the sarcolemma, transverse tubules, and intercalated discs. In skeletal muscles the protein was localized to the sarcolemma and transverse tubules. No evidence for the presence of the protein in the sarcoplasm or in association with mitochondria, the sarcoplasmic reticulum, or contractile elements was obtained. The observation that plasma membranes in cells expressing annexin V have the protein associated with them is in agreement with previous data on Ca(2+)-dependent binding of the protein to brain and heart membranes, and on existence of both EGTA- and Triton X-100-extractable and resistant fractions of annexin V in these membranes. The present data support the hypothesis that annexin V might be involved in membrane trafficking and suggest a role for this protein in the regulation of cytoplasmic activities in glial cells.

PMID:
1387136
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Wiley Icon for FindIt@Stanford
    Loading ...
    Write to the Help Desk