Send to:

Choose Destination
See comment in PubMed Commons below
J Biol Chem. 1992 Apr 15;267(11):7856-62.

Molecular cloning of murine 72-kDa type IV collagenase and its expression during mouse development.

Author information

  • 1Biocenter Oulu, University of Oulu, Finland.


We report the isolation of a cDNA clone providing the first and complete sequence of mouse 72-kDa type IV collagenase. The clone contains 2800 nucleotides with a 1986-nucleotide open reading frame coding for 662 amino acids. The amino acid sequence includes a 29-residue signal peptide, an 80-residue propeptide, and a 553-residue enzyme proper. The sequence identity between the mouse and human enzymes is 96% with all cysteine residues conserved. The carboxyl-terminal domain of the mouse enzyme contains two more residues than the human enzyme. Northern hybridization analysis revealed considerable expression of the enzyme gene in newborn mouse lung, heart, kidney, and psoas muscle tissues, whereas only weak or no signals were observed in liver, spleen, and brain. Expression of the gene was substantially reduced in the same tissues of 3-month-old mice. In situ hybridization analysis of 72-kDa type IV collagenase expression in 10-15-day-old mouse embryos showed that the gene was intensely expressed in mesenchymal cells. Brain and surface ectoderm were completely negative. The epithelial tissue component of developing organs was negative with the exception of salivary gland. Although the expression varied somewhat between different mesenchymal tissues, no temporal or spatial changes could be associated with the advancement of epithelial branching morphogenesis. These findings together with our previous data on the expression of 72-kDa type IV collagenase in human tumors indicate that this enzyme has some very specific roles both in the physiological and pathological degradation of extracellular matrix. Furthermore, it has become clear that the closely related 92-kDa type IV collagenase differs completely with respect to expression pattern as well as gene regulation. The mouse cDNA clones reported in this study may provide important tools unraveling the actual roles of these enzymes in vivo.

[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Write to the Help Desk