Display Settings:

Format

Send to:

Choose Destination
We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
Proc Natl Acad Sci U S A. 1992 Apr 1;89(7):2614-8.

What is the optimum size for the genetic alphabet?

Author information

  • Laboratory of Mathematical Biology, National Institute for Medical Research, Mill Hill, London, United Kingdom.

Abstract

An important question in biology is why the genetic alphabet is made of just two base pairs (G.C and A.T). This is particularly interesting because of the recent demonstration [Piccirilli, J. A., Krauch, T., Moroney, S. E. & Benner, S. A. (1990) Nature (London) 343, 33-37] that the alphabet can in principle be larger. It is possible to explain the size of the present genetic alphabet as a frozen character state that was an evolutionary optimum in an RNA world when nucleic acids functioned both for storing genetic information and for expressing information as enzymatically active RNA molecules--i.e., ribozymes. A previous model [Szathm√°ry, E. (1991) Proc. R. Soc. London Ser. B 245, 91-99] has described the principle of this approach. The present paper confirms and extends these results by showing explicitly the ways in which copying fidelity and metabolic efficiency change with the size of the genetic alphabet.

PMID:
1372984
[PubMed - indexed for MEDLINE]
PMCID:
PMC48712
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk