Display Settings:

Format

Send to:

Choose Destination
Brain Res. 1992 May 29;581(2):252-60.

Lesioning of the nucleus basalis of Meynert has differential effects on mu, delta and kappa opioid receptor binding in rat brain: a quantitative autoradiographic study.

Author information

  • 1Department of Pharmacology, New York University Medical Center, NY 10016.

Abstract

Opioid receptor binding was investigated in rat brain following lesioning of the nucleus basalis of Meynert (nbM). The nbM, which provides cholinergic input to the cortex, was lesioned unilaterally using ibotenic acid. The efficacy of lesioning was confirmed by the observation of a significant decrease in choline acetyltransferase (ChAT) activity in the ipsilateral prefrontal cortex. The specific laminar and regional distribution of mu, delta and kappa opioid receptor binding was quantitated in various cortical and limbic structures in the rat using autoradiography. Distinct medial to lateral gradients of mu and kappa opioid binding were observed in regions of the cerebral cortex. In the lesioned hemisphere the levels of mu, delta and kappa opioid binding were altered in localized areas of the cerebral cortex and the hippocampus. The direction of these binding changes varied with the opioid receptor type being assessed. Delta opioid binding was increased in the lateral portions of the frontal, occipital, perirhinal and retrosplenial granular cortices. Kappa opioid binding was increased in the lateral portion of the occipital cortex and in the CA3 region of the hippocampus. In contrast, mu opioid binding was decreased in the lateral portions of the frontal, entorhinal and forelimb cortices. These opioid receptor changes are discussed with respect to the interactions between the cholinergic and opioid systems, and relevance of the nbM lesion model to Alzheimer's disease.

PMID:
1327399
[PubMed - indexed for MEDLINE]

LinkOut - more resources

Full Text Sources

Other Literature Sources

Molecular Biology Databases

Miscellaneous

PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Icon for Elsevier Science
    Loading ...
    Write to the Help Desk