Send to:

Choose Destination
See comment in PubMed Commons below
J Cell Biol. 1992 Jul;118(1):195-201.

Intercellular calcium signaling via gap junctions in glioma cells.

Author information

  • 1Department of Neurology, UCLA School of Medicine 90024.


Calcium signaling in C6 glioma cells in culture was examined with digital fluorescence video microscopy. C6 cells express low levels of the gap junction protein connexin43 and have correspondingly weak gap junctional communication as evidenced by dye coupling (Naus, C. C. G., J. F. Bechberger, S. Caveney, and J. X. Wilson. 1991. Neurosci. Lett. 126:33-36). Transfection of C6 cells with the cDNA encoding connexin43 resulted in clones with increased expression of connexin43 mRNA and protein and increased dye coupling, as well as markedly reduced rates of proliferation (Zhu, D., S. Caveney, G. M. Kidder, and C. C. Naus. 1991. Proc. Natl. Acad. Sci. USA. 88:1883-1887; Naus, C. C. G., D. Zhu, S. Todd, and G. M. Kidder. 1992. Cell Mol. Neurobiol. 12:163-175). Mechanical stimulation of a single cell in a culture of non-transfected C6 cells induced a wave of increased intracellular calcium concentration ([Ca2+]i) that showed little or no communication to adjacent cells. By contrast, mechanical stimulation of a single cell in cultures of C6 clones expressing transfected connexin43 cDNA induced a Ca2+ wave that was communicated to multiple surrounding cells, and the extent of communication was proportional to the level of expression of the connexin43 cDNA. These results provide direct evidence that intercellular Ca2+ signaling occurs via gap junctions. Ca2+ signaling through gap junctions may provide a means for the coordinated regulation of cellular function, including cell growth and differentiation.

[PubMed - indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk