Send to

Choose Destination
See comment in PubMed Commons below
Circulation. 1992 Jul;86(1):279-88.

The role of L-arginine in ameliorating reperfusion injury after myocardial ischemia in the cat.

Author information

  • 1Department of Physiology, Jefferson Medical College, Thomas Jefferson University, Philadelphia, Pa. 19107-6799.



Myocardial ischemia followed by reperfusion results in endothelial dysfunction characterized by a reduced release of endothelium-derived relaxing factor (EDRF). Because EDRF has been characterized as nitric oxide, we examined the ability of L-arginine, the substrate for nitric oxide synthesis, to protect in a feline model of myocardial ischemia plus reperfusion.


The effects of L-arginine were investigated in a 6-hour model of myocardial ischemia and reperfusion in pentobarbital-anesthetized cats. A bolus administration (30 mg/kg) of L-arginine, or its enantiomer D-arginine, was given followed by a continuous infusion of 10 mg/kg/min for 1 hour starting 10 minutes before reperfusion. Myocardial ischemia plus reperfusion in cats receiving D-arginine resulted in severe myocardial injury and endothelial dysfunction characterized by marked myocardial necrosis, high cardiac myeloperoxidase activity in ischemic cardiac tissue, and loss of acetylcholine- and A-23187-induced endothelium-dependent relaxation in coronary artery rings. In contrast, myocardial ischemia plus reperfusion cats treated with L-arginine exhibited a reduced area of cardiac necrosis (16 +/- 2% versus 41 +/- 5% of area at risk, p less than 0.01), lower myeloperoxidase activity in the ischemic region (0.3 +/- 0.08 versus 0.8 +/- 0.10 units/100 mg tissue, p less than 0.05), and significant preservation of acetylcholine- (p less than 0.01) and A-23187- (p less than 0.01) induced endothelial-dependent relaxation.


These results demonstrate the ability of L-arginine to reduce necrotic injury in a cat model of myocardial ischemia plus reperfusion, and this reduction in infarct size is associated with the preservation of endothelial function and attenuation of neutrophil accumulation in ischemic cardiac tissue.

[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Write to the Help Desk