Send to:

Choose Destination
See comment in PubMed Commons below
Nature. 1992 May 7;357(6373):74-7.

Calcium-dependent enhancement of calcium current in smooth muscle by calmodulin-dependent protein kinase II.

Author information

  • 1Biomedical Imaging Group, University of Massachusetts Medical Center, Worcester 01655.


Calcium entry through voltage-activated Ca2+ channels is important in regulating many cellular functions. Activation of these channels in many cell types results in feedback regulation of channel activity. Mechanisms linking Ca2+ channel activity with its downregulation have been described, but little is known of the events responsible for the enhancement of Ca2+ current that in many cells follows Ca2+ channel activation and an increase in cytoplasmic Ca2+ concentration. Here we investigate how this positive feedback is achieved in single smooth muscle cells. We find that in these cells voltage-activated calcium current is persistently but reversibly enhanced after periods of activation. This persistent enhancement of the Ca2+ current is mediated by activation of calmodulin-dependent protein kinase II because it is blocked when either the rise in cytoplasmic Ca2+ is inhibited or activation of calmodulin-dependent protein kinase II is prevented by specific peptide inhibitors of calcium-calmodulin or calmodulin-dependent protein kinase II itself. This mechanism may be important in different forms of Ca2+ current potentiation, such as those that depend on prior Ca2+ channel activation or are a result of agonist-induced release of Ca2+ from internal stores.

[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Nature Publishing Group
    Loading ...
    Write to the Help Desk