Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Proc Natl Acad Sci U S A. 1992 May 1;89(9):3825-9.

Cannabinoids inhibit N-type calcium channels in neuroblastoma-glioma cells.

Author information

  • 1Department of Anesthesiology, University of Washington School of Medicine, Seattle 98195.

Abstract

The psychoactive properties of Cannabis sativa and its major biologically active constituent, delta 9-tetrahydrocannabinol, have been known for years. The recent identification and cloning of a specific cannabinoid receptor suggest that cannabinoids mimic endogenous compounds affecting neural signals for mood, memory, movement, and pain. Using whole-cell voltage clamp and the cannabinomimetic aminoalkylindole WIN 55,212-2, we have found that cannabinoid receptor activation reduces the amplitude of voltage-gated calcium currents in the neuroblastoma-glioma cell line NG108-15. The inhibition is potent, being half-maximal at less than 10 nM, and reversible. The inactive enantiomer, WIN 55,212-3, does not reduce calcium currents even at 1 microM. Of the several types of calcium currents in NG108-15 cells, cannabinoids predominantly inhibit an omega-conotoxin-sensitive, high-voltage-activated calcium current. Inhibition was blocked by incubation with pertussis toxin but was not altered by prior treatment with hydrolysis-resistant cAMP analogues together with a phosphodiesterase inhibitor, suggesting that the transduction pathway between the cannabinoid receptor and calcium channel involves a pertussis toxin-sensitive GTP-binding protein and is independent of cAMP metabolism. However, the development of inhibition is considerably slower than a pharmacologically similar pathway used by an alpha 2-adrenergic receptor in these cells. Our results suggest that inhibition of N-type calcium channels, which could decrease excitability and neurotransmitter release, may underlie some of the psychoactive effects of cannabinoids.

PMID:
1315042
[PubMed - indexed for MEDLINE]
PMCID:
PMC525583
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk