Send to:

Choose Destination
See comment in PubMed Commons below
Proc Natl Acad Sci U S A. 1992 Feb 15;89(4):1438-42.

Carbachol-activated calcium entry into HT-29 cells is regulated by both membrane potential and cell volume.

Author information

  • 1Department of Molecular and Cell Biology, University of California, Berkeley 94720.


Intracellular Ca2+ ([Ca2+]i) was measured in single Cl(-)-secretory HT-29/B6 colonic carcinoma cells with the Ca2+ probe fura-2 and digital imaging microscopy. Resting [Ca2+]i was 63 +/- 3 nM (n = 62). During treatment with the muscarinic agonist carbachol, [Ca2+]i rapidly increased to 901 +/- 119 nM and subsequently reached a stable level of 309 +/- 23 nM, which depended on Ca2+ entry into the cells from the extracellular solution. The goal of this study was to characterize the Ca2+ entry pathway across the cell membrane with respect to its dependence on membrane potential and cell volume. Under resting conditions [Ca2+]i showed no apparent dependence on either potential or cell volume. After stimulating Ca2+ entry with carbachol (100 microM), [Ca2+]i increased with hyperpolarization (low-K+ or valinomycin treatment) and decreased with depolarization (high-K+ or gramicidin treatment) of the cell, as expected from changes in driving force for Ca2+ entry. In stimulated cells, hypotonic solutions caused [Ca2+]i to increase, whereas hypertonic solutions blocked Ca2+ entry. The shrinkage-induced decreases in [Ca2+]i were only slightly affected when the membrane potential was increased with valinomycin, suggesting that shrinkage directly affects the carbachol-activated Ca2+ conductance. In contrast, the swelling-induced increase in [Ca2+]i was significantly reduced in valinomycin-treated cells, suggesting an indirect dependence on a swelling-activated K+ conductance. Thus, carbachol-stimulated Ca2+ entry is under the dual control of membrane potential and cell volume. This mechanism may serve as a regulatory influence that determines the extent of Ca2+ influx during cholinergic stimulation.

[PubMed - indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk