Send to:

Choose Destination
See comment in PubMed Commons below
J Pediatr. 2003 Aug;143(2):171-9.

Defining the nature of the cerebral abnormalities in the premature infant: a qualitative magnetic resonance imaging study.

Author information

  • 1Murdoch Children's Research Institute, University of Melbourne, Royal Women's Hospital, Melbourne, Australia.



The aim of this study was to define qualitatively the nature and extent of white and gray matter abnormalities in a longitudinal population-based study of infants with very low birth weight. Perinatal factors were then related to the presence and severity of magnetic resonance imaging (MRI) abnormalities.


From November 1998 to December 2000, 100 consecutive premature infants admitted to the neonatal intensive care unit at Christchurch Women's Hospital were recruited (98% eligible) after informed parental consent to undergo an MRI scan at term equivalent. The scans were analyzed by a single neuroradiologist experienced in pediatric MRI, with a second independent scoring of the MRI using a combination of criteria for white matter (cysts, signal abnormality, loss of volume, ventriculomegaly, corpus callosal thinning, myelination) and gray matter (gray matter signal abnormality, gyration, subarachnoid space). Results were analyzed against individual item scores as well as the presence of moderate-severe white matter score, total gray matter score, and total brain score.


The mean gestational age was 27.9+/-2.4 weeks (range, 23-32 weeks), and mean birth weight was 1063+/-292 g. The greatest univariate predictors for moderate-severe white matter abnormality were lower gestational age (odds ratio [OR], 1.3; 95% confidence interval [CI], 1.1-1.7; P<.01), maternal fever (OR, 2.2; 95% CI, 1.1-4.6; P<.04), proven sepsis in the infant at delivery (OR, 1.8; 95% CI, 1.1-3.6; P=0.03), inotropic support (OR, 2.7; 95% CI, 1.5-4.5; P<.001), patent ductus arteriosus (OR, 2.2; 95% CI, 1.2-3.8; P=.01), grade III/IV intraventricular hemorrhage (P=.015), and the occurrence of a pneumothorax (P=.05). There was a significant protective effect of intrauterine growth restriction (OR, 0.51; 95% CI, 0.23-0.99; P=.04). Gray matter abnormality was highly related to the presence and severity of white matter abnormality. A unique pattern of cerebral abnormality consisting of significant diffuse white matter atrophy, ventriculomegaly, immature gyral development, and enlarged subarachnoid space was found in 10 of 11 infants with birth gestation <26 weeks. Given the later outcome of these infants, this pattern may have very high risk for later global neurodevelopmental disability.


This MRI study confirms a high incidence of cerebral white matter abnormality at term in an unselected population of premature infants, which is predominantly a result of noncystic injury in the extremely immature infant. We confirm that the major perinatal risk factors for white matter abnormality are related to perinatal infection, particularly maternal fever and infant sepsis, and hypotension with inotrope use. We have defined a distinct pattern of diffuse white and gray matter abnormality in the extremely immature infant.

[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Write to the Help Desk