Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
J Biol Chem. 2003 Nov 28;278(48):48313-20. Epub 2003 Sep 5.

Lysines 128 and 132 enable lipopolysaccharide binding to MD-2, leading to Toll-like receptor-4 aggregation and signal transduction.

Author information

  • 1Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA.

Abstract

Three cell-surface proteins have been recognized as components of the mammalian signaling receptor for bacterial lipopolysaccharide (LPS): CD14, Toll-like receptor-4 (TLR4), and MD-2. Biochemical and visual studies shown here demonstrate that the role of CD14 in signal transduction is to enhance LPS binding to MD-2, although its expression is not essential for cellular activation. These studies clarify how MD-2 functions: we found that MD-2 enables TLR4 binding to LPS and allows the formation of stable receptor complexes. MD-2 must be bound to TLR4 on the cell surface before binding can occur. Consequently, TLR4 clusters into receptosomes (many of which are massive) that recruit intracellular toll/IL-1/resistance domain-containing adapter proteins within minutes, thus initiating signal transduction. TLR4 activation correlates with the ability of MD-2 to bind LPS, as MD-2 mutants that still bind TLR4, but are impaired in the ability to bind LPS, conferred a greatly blunted LPS response. These findings help clarify the earliest events of TLR4 triggering by LPS and identify MD-2 as an attractive target for pharmacological intervention in endotoxin-mediated diseases.

PMID:
12960171
[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Icon for HighWire
    Loading ...
    Write to the Help Desk