Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Circ Res. 2003 Oct 3;93(7):664-73. Epub 2003 Sep 4.

Hypoxia-inducible factor-1 mediates activation of cultured vascular endothelial cells by inducing multiple angiogenic factors.

Author information

  • 1Genzyme Corporation, 31 New York Ave, Framingham, Mass 01701-9322, USA.

Abstract

Hypoxia-inducible factor-1 (HIF-1) mediates transcriptional activation of vascular endothelial growth factor (VEGF) and other hypoxia-responsive genes. Transgenic expression of a constitutively stable HIF-1alpha mutant increases the number of vascular vessels without vascular leakage, tissue edema, or inflammation. This study aimed to investigate the molecular basis by which HIF-1 mediates the angiogenic response to hypoxia. In primary human endothelial cells, hypoxia, desferrioxamine, or infection with Ad2/HIF-1alpha/VP16, an adenoviral vector encoding a constitutively stable hybrid form of HIF-1alpha, increased the mRNA and protein levels of VEGF, angiopoietin-2 (Ang-2), and angiopoietin-4 (Ang-4). Infection with Ad2/CMVEV (a control vector expressing no transgene) had no effect. Angiopoietin-1 (Ang-1) expression was not detected in human endothelial cells. Ang-4 was also induced by hypoxia or Ad2/HIF-1alpha/VP16 in human cardiac cells, whereas Ang-1 expression remained unchanged. Recombinant Ang-4 protein protected endothelial cells against serum starvation-induced apoptosis and increased cultured endothelial cell migration and tube formation. Ad2/HIF-1alpha/VP16 stimulated endothelial cell proliferation and tube formation. Hypoxia- or Ad2/HIF-1alpha/VP16-induced tube formation was significantly reduced by a Tie-2 inhibitor. These results suggest that HIF-1 mediates the angiogenic response to hypoxia by upregulating the expression of multiple angiogenic factors. Ang-4 can function similarly as Ang-1 and substitute for Ang-1 to participate in hypoxia-induced angiogenesis. Activation of the angiopoietin/Tie-2 system may play a role in the ability of HIF-1 to induce hypervascularity without excessive permeability.

PMID:
12958144
[PubMed - indexed for MEDLINE]
Free full text

Publication Types, MeSH Terms, Substances

Publication Types

MeSH Terms

Substances

PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Write to the Help Desk