Send to

Choose Destination
See comment in PubMed Commons below
J Muscle Res Cell Motil. 2002;23(7-8):697-702.

Dictyostelium myosin II as a model to study the actin-myosin interactions during force generation.

Author information

  • 1Center for Interdisciplinary Research, Tohoku University, Aramaki-aza-aoba, Aoba-ku, Sendai, Miyagi 980-8579, Japan.


During steady-state ATP hydrolysis by actomyosin, myosin cyclically passes through strong actin-binding states and weak actin-binding states, depending on the nature of a nucleotide in the ATPase site. This cyclic change of actin-myosin affinity is coupled with the lever-arm swing and is critical for the sliding motion and force generation of actomyosin. To understand the structure-function relationship of this ATPase-dependent actin-myosin interaction, Dictyostelium myosin II has been extensively used for site-directed mutagenesis. By generating a large number of mutant myosins, two hydrophobic actin-binding sites have been revealed, located at the tip of the upper and lower 50 K subdomains of Dictyostelium myosin, one of which is the 'cardiomyopathy loop'. Furthermore, the slight change in relative orientation of these two hydrophobic sites around the 'strut loop' has been shown to work as a switch to turn on and off the strong binding to actin. Once the switch is turned off, myosin enters in the weak-binding state, where ionic interactions between actin and the 'loop 2' of myosin become the dominant force to maintain the actin-myosin association. The details of actin-myosin interactions revealed by the Dictyostelium system can serve as a framework for further examinations of the myosin superfamily proteins.

[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Loading ...
    Write to the Help Desk