Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
J Biol Chem. 2003 Nov 7;278(45):44645-9. Epub 2003 Aug 28.

Na-H exchange-dependent increase in intracellular pH times G2/M entry and transition.

Author information

  • 1Department of Stomatology, University of California, San Francisco, San Francisco, California 94143, USA.

Abstract

It is well established that activation of the Na-H exchanger NHE1 and increases in intracellular pH (pHi) are early and universal responses to mitogens and have permissive effects in promoting cell proliferation. Despite this evidence, a specific role for NHE1 or pHi in cell cycle progression remains undetermined. We now show that NHE1 activity and pHi regulate the timing of G2/M entry and transition. Prior to G2/M entry there is a rapid and transient increase in NHE1 activity and pHi, but in fibroblasts expressing a mutant NHE1 that lacks ion translocation activity, this increase in pHi is attenuated, S phase is delayed, and G2/M transition is impaired. In the absence of ion translocation by NHE1, expression of cyclin B1 and the kinase activity of Cdc2 are decreased and Wee1 kinase expression increases. Increasing pHi in the absence of NHE1 activity, however, is sufficient to restore Cdc2 activity and cyclin B1 expression and to promote G2/M entry and transition. These data indicate that a transient increase in pHi induced by NHE1 promotes the timing of G2/M, and they suggest that increases in pHi at the completion of S phase may constitute a previously unrecognized checkpoint for progression to G2 and mitosis.

PMID:
12947095
[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Icon for HighWire Icon for Faculty of 1000
    Loading ...
    Write to the Help Desk