Display Settings:

Format

Send to:

Choose Destination
Neuroscience. 2003;121(1):39-49.

Focal motility determines the geometry of dendritic spines.

Author information

  • 1Friedrich Miescher Institute, PO Box 2543, 4002 Basel, Switzerland.

Abstract

The geometry of dendritic spines has a major impact on signal transmission at excitatory synapses. To study it in detail we raised transgenic mice expressing an intrinsic green fluorescent protein-based plasma membrane marker that directly visualizes the cell surface of living neurons throughout the brain. Confocal imaging of developing hippocampal slices showed that as dendrites mature they switch from producing labile filopodia and polymorphic spine precursors to dendritic spines with morphologies similar to those reported from studies of adult brain. In images of live dendrites these mature spines are fundamentally stable structures, but retain morphological plasticity in the form of actin-rich lamellipodia at the tips of spine heads. In live mature dendrites up to 50% of spines had cup-shaped heads with prominent terminal lamellipodia whose motility produced constant alterations in the detailed geometry of the synaptic contact zone. The partial enveloping of presynaptic terminals by these cup-shaped spines coupled with rapid actin-driven changes in their shape may operate to fine-tune receptor distribution and neurotransmitter cross-talk at excitatory synapses.

PMID:
12946698
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Write to the Help Desk