Format

Send to

Choose Destination
See comment in PubMed Commons below
Endocrinology. 2003 Sep;144(9):4154-63.

Saturated fatty acids synergize with elevated glucose to cause pancreatic beta-cell death.

Author information

  • 1Department of Nutrition, University of Montréal, Québec, Canada H2L 4MI.

Abstract

We have proposed the "glucolipotoxicity" hypothesis in which elevated free fatty acids (FFAs) together with hyperglycemia are synergistic in causing islet beta-cell damage because high glucose inhibits fat oxidation and consequently lipid detoxification. The effects of 1-2 d culture of both rat INS 832/13 cells and human islet beta-cells were investigated in medium containing glucose (5, 11, 20 mM) in the presence or absence of various FFAs. A marked synergistic effect of elevated concentrations of glucose and saturated FFA (palmitate and stearate) on inducing beta-cell death by apoptosis was found in both INS 832/13 and human islet beta-cells. In comparison, linoleate (polyunsaturated) synergized only modestly with high glucose, whereas oleate (monounsaturated) was not toxic. Treating cells with the acyl-coenzyme A synthase inhibitor triacsin C, or the AMP kinase activators metformin and 5-aminoimidazole-4-carboxamide-1-beta-D-ribofuranoside that redirect lipid partitioning to oxidation, curtailed glucolipotoxicity. In contrast, the fat oxidation inhibitor etomoxir, like glucose, markedly enhanced palmitate-induced cell death. The data indicate that FFAs must be metabolized to long chain fatty acyl-CoA to exert toxicity, the effect of which can be reduced by activating fatty acid oxidation. The results support the glucolipotoxicity hypothesis of beta-cell failure proposing that elevated FFAs are particularly toxic in the context of hyperglycemia.

[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Atypon
    Loading ...
    Write to the Help Desk